Mark schemes

flame emission spectroscopy
flame test
white
barium chloride (solution)
(conversion)
$(800 \text{ cm}^3 = \frac{800}{1000} =) 0.8$
(dm ³) allow correct use of incorrect / no
volume conversion
(mass =) 0.8 × 258 (g)
= 206.4 (g)
= 206 (g)
allow an answer correctly calculated to 3 significant figures from an incorrect calculation which uses the values in the question
alternative approach: (conversion)
$(258 \text{ g/dm}^3 = 1000 =) 0.258$ (g/cm ³) (1)
(mass =) 0.258 × 800 (g) (1)
allow correct use of incorrect / no concentration conversion
= 206.4 (g) (1)
= 206 (g) (1)
allow an answer correctly calculated to 3 significant figures from an incorrect calculation which uses the values in the

question [8] Q2. (a) the (minimum) energy needed for particles to react or the (minimum) energy needed for a reaction to occur allow the (minimum) energy needed to start a reaction 1 (b) $(M_{\rm r} \text{ of } {\rm Fe}_2 {\rm O}_3 =) 160$ 1 3000 (moles $Fe_2O_3 = 160 =$) 18.75 (mol) allow correct use of incorrectly calculated M_r 1 1000 (moles AI = 27 =) 37.0 (mol) allow 37.037037 (mol) correctly rounded to at least 2 significant figures if both MP2 and MP3 are not awarded allow 1 mark for 0.01875 mol Fe₂O₃ and 0.037 mol Al 1 (aluminium is limiting because) 37.0 mol is less than the (2 x 18.75 =) 37.5 mol (aluminium needed) or iron oxide is in excess because 18.75 mol is more than the (2^{2}) =) 18.5 mol (iron oxide needed) allow correct use of incorrect number of moles from steps 2 and/or 3 alternative approaches: approach 1: (finding required mass of aluminium by moles method) $(M_{\rm r} \text{ of } {\rm Fe}_2 {\rm O}_3 =) 160 (1)$ 3000 (moles $Fe_2O_3 = 160 =$) 18.75 (mol) (1) allow correct use of incorrectly

(moles Al needed =18.75 × 2 =) 37.5 (mol)

calculated M_r

and

(mass Al needed = $37.5 \times 27 =$) 1012.5 (g) or 1.0125 kg (1) allow correct use of incorrectly calculated moles of iron oxide allow correct use of incorrectly calculated moles of aluminium needed

(so) 1.00 kg of aluminium is not enough (1) dependent on calculated mass of aluminium needed being greater than 1.00 (kg)

approach 2: (finding required mass of aluminium by proportion method)

 $(M_{\rm r} \text{ of } {\rm Fe}_2 {\rm O}_3 =) 160 (1)$

 $(3.00 \text{ kg Fe}_2\text{O}_3 \text{ needs})$ $(3.00 \text{ kg Fe}_2\text{ needs})$

(=) 1.0125 (kg) (1)

(so) 1.00 kg of aluminium is not enough (1) dependent on calculated mass of aluminium needed being greater than 1.00 (kg)

alternative approaches:

approach 3: (finding required mass of iron oxide by moles method)

 $M_{\rm r}$ of Fe₂O₃ =) 160 (1)

(moles AI = $\frac{1000}{27}$ =) 37.0 (mol) (1) allow 37.037037 (mol) correctly rounded to at least 2 significant figures

 $\begin{array}{l} (\text{moles Fe}_2\text{O}_3 \text{ needed}) = \frac{37.0}{2} \) = 18.5 \ (\text{mol}) \\ \text{and} \\ (\text{mass Fe}_2\text{O}_3 \text{ needed} = 18.5 \times 160 =) \ 2960 \ (\text{g}) \ \text{or} \ 2.96 \ (\text{kg}) \ (1) \\ allow \ correct \ use \ of \ incorrectly \\ calculated \ moles \ of \ aluminium \\ allow \ correct \ use \ of \ incorrectly \\ calculated \ moles \ of \ iron \ oxide \ needed \\ allow \ correct \ use \ of \ incorrectly \\ calculated \ M_r \end{array}$

	(so) 3.00 kg of iron oxide is an excess (1) dependent on calculated mass of iron oxide needed being less than 3.00 (kg)		
	approach 4: (finding required mass of iron oxide by proportion method)		
	(<i>M</i> _r of Fe ₂ O ₃ =) 160 (1)		
	(1.00 kg Al needs) $(kg Fe_2O_3)$ (kg Fe_2O_3) (1) allow correct use of incorrectly calculated M_r		
	(=) 2.96 (kg) (1)		
	(so) 3.00 kg of iron oxide is an excess (1)		
	dependent on calculated mass of iron oxide needed being less than 3.00 (kg)	1	
(c)	$Mg(s) + Zn^{2+}(aq) \rightarrow Mg^{2+}(aq) + Zn(s)$		
	allow multiples allow 1 mark for Mg²+ + Zn with missing		
	or incorrect state symbols	2	
(d)	magnesium (atoms) are oxidised because they lose electrons	2	
(u)	magnesium (alonis) are oxidised because they lose electrons	1	
	(and) zinc (ions) are reduced because they gain electrons if no other marks awarded allow 1 mark for magnesium (atoms) lose electrons and zinc (ions) gain electrons 1		
		1	[9]
			[9]
Q3.			
(a)	liquid gas	1	
(b)	(boiling point) increases (down the table / group)	1	
	(because) the relative formula / molecular mass increases		
	or (because) the size of the molecule increases	1	
	(ap) the intermelogular forces increased (in strength)	1	
	(so) the intermolecular forces increase (in strength) allow (so) the forces between molecules		
	incroaso (in strongth)		

increase (in strength)

(so) more energy is needed to overcome the intermolecular forces allow (so) more energy is needed to separate the molecules do **not** accept a reference to breaking bonds unless specifically between molecules 1 boiling point is a bulk property (c) allow boiling point is related to intermolecular forces (so more than one molecule is involved) 1 (d) the gas / halogen is toxic allow the gas / halogen is poisonous / harmful allow to prevent inhalation of the gas / halogen ignore deadly / lethal 1 (e) (going down the group) the outer electrons / shell become further from the nucleus allow energy level for shell throughout allow the atoms become larger allow the number of shells increases ignore the number of outer shells increases 1 (so) the nucleus has less attraction for the outer electrons / shell allow (so) the nucleus has less attraction for the incoming electron allow (so) increased shielding between the nucleus and the outer electrons / shell allow (so) increased shielding between the nucleus and the incoming electron 1 (so) an electron is gained less easily 1 (f) 4.48 (g iron) and 8.52 (g chlorine) 1 4.48 (moles Fe = 58 =) 0.08 allow correct calculation using incorrectly calculated mass of iron 1 8.52

(moles CI = $\frac{0.02}{35.5}$ =) 0.24

	allow correct calculation using incorrectly calculated mass of chlorine allow (moles $Cl_2 = \frac{8.52}{71} = 0.12$ (Fe : Cl = 0.08 : 0.24 =) 1 : 3	1
	allow correct calculation using incorrectly calculated moles of iron and / or chlorine	
	2 Fe + 3 Cl ₂ \rightarrow 2 FeCl ₃	
	allow multiples / fractions	
	allow a correctly balanced equation including Fe and Cl₂ from an incorrect ratio of Fe : Cl	
	allow 1 mark for Fe and Cl₂ (reactants) and FeCl₃ (product) or	
	allow 1 mark for Fe and Cl ₂ (reactants) and a formula for iron chloride correctly derived from an incorrect ratio of Fe : Cl (product)	
		2 [16]
Q4. (a)	to make sure all of the oxide (of copper) has reacted	
	or	
	to make sure all water (produced) is removed	
	ignore to ensure complete reaction unqualified ignore to make sure all of the hydrogen has reacted	
		1
(b)	to prevent hydrogen escaping (into the air)	1
	(because) hydrogen is explosive ignore hydrogen is flammable	1
(c)	(mass of copper) 8.66 (g)	1

(d) moles Cu = 0.04or $\frac{2.54}{63.5} = 0.04$

1

1

[8]

1

1

moles $H_2O = 0.04$ or $\frac{0.72}{18} = 0.04$

ratio = 1:1 so equation 2 is correct

alternative approach A

(calculating mass of water from copper)

moles Cu= 0.04 or $\frac{2.54}{63.5}$ = 0.04(1)

 $0.02 \times 18 = 0.36$ (g of water for equation 1) (1)

 $0.04 \times 18 = 0.72$ (g of water) so equation 2 is correct (1)

alternative approach B

calculating mass of copper from water)

moles H₂O=0.04 or $\frac{0.72}{18}$ =0.04 (1)

 $0.08 \times 63.5 = 5.08$ (g of copper for equation 1) (1)

 $\begin{array}{l} 0.04 \ge 63.5 = 2.54 \ (\text{g of copper}) \ \text{so equation 2 is correct (1)} \\ \hline \textbf{alternative approach C} \\ (mass ratio) \\ (copper: water for equation 1) \\ 127: 18 = 7.06: 1 \ (1) \\ (copper: water for equation 2) \\ 63.5: 18 = 3.53: 1 \ (1) \\ 2.54: 0.72 = 3.53: 1 = 63.5: 18 \\ \text{so equation 2 is correct (1)} \end{array}$

Q5.

(a)	polystyrene is a better (thermal) insulator allow polystyrene is a poorer (thermal) conductor
	(so) reduces energy exchange (with the surroundings) allow (so) reduces energy / heat loss (to the surroundings)
(b)	all six points plotted correctly allow a tolerance of ± ½ a small square allow 1 mark for at least 3 points plotted correctly

		2
	line of best fit through points plotted from the table	1
	both lines of best fit extrapolated correctly until they cross	1
(c)	11 (cm ³) allow ecf from part (b) allow answers in the range 10.75 to 11.25 (cm ³) allow a tolerance of $\pm \frac{1}{2}$ a small square	1
(d)	(27.5 - 18.9) = 8.6 (°C) allow ecf from part (b) allow answers in the range 8.5 to 8.7 (°C) allow a tolerance of ± ½ a small square	1
(e)	an answer of 0.62 (mol/dm ³) for concentration in mol/dm ³ scores 4 marks an answer of 0.31 (mol/dm ³) for concentration in mol/dm ³ scores 3 marks	
	(moles H ₂ SO ₄ = 0.500 × $\frac{15.5}{1000}$) = 0.00775	1
	(moles KOH = 2 x moles $H_2SO_4 = 2 \times 0.00775$) = 0.0155 allow correct calculation using incorrectly calculated value of moles of H_2SO_4	1
	$(\text{conc KOH} = \text{moles KOH x} \frac{1000}{25.0}) = 0.0155 \text{ x} \frac{1000}{25.0})$ allow correct calculation using incorrectly calculated value of moles of KOH	1
	= 0.62 (mol/dm ³) allow correct answer using incorrectly calculated value of moles of KOH	1
	(<i>M</i> ^r KOH =) 56	1
	(conc = <i>M</i> _r x conc in mol/dm ³ = 56 x 0.62) = 34.7 (g/dm ³)	

allow 35 or 34.72 (g/dm³) allow correct answer using incorrectly calculated value of concentration in mol/dm³ and/or incorrect M_r

alternative approach for step 1 to step 4

$$\frac{2}{1} = \frac{25 \times \text{conc KOH}}{15.5 \times 0.500} \quad (2)$$

$$(\text{conc KOH}) = \frac{2 \times 15.5 \times 0.500}{25.0} \quad (1)$$

[14]

1

1

Q6.

(a)	sodium oxide allow Na₂O	
		1
(b)	oxidation	1
(c)	13	1
(d)	sodium hydroxide	1
(e)	OH-	1
(f)	(volume =) $\frac{250}{1000}$ or $\frac{1}{4}$	
	or 0.25 (dm³)	1
	or	
	$(mass per cm^3 =) \frac{40}{1000} (g)$	

or 0.04 (g)

$$(\frac{250}{1000} \times 40 =) 10 \text{ (g)}$$

an answer of 10 (g) scores 2 marks

(g) all points correct

(h)	allow a tolerance of ±½ a small square allow 1 mark for 3 points correct ignore any attempt at a line of best fit 39 °C	2
	allow any value from 34 to 46 (°C)	1 [10]
Q7.		
(a)	chlorine is toxic	
	allow carbon monoxide is toxic	
	allow poisonous for toxic ignore harmful / deadly / dangerous	
	allow a poisonous gas is used /	
	produced	
	allow titanium chloride is corrosive	
		1
(b)	any one from:	
	very exothermic reaction	
	allow explosive allow violent reaction	
	ignore vigorous reaction	
	ignore sodium is very reactive	
	produces a corrosive solution	
	allow caustic for corrosive	
	ignore alkaline	
	 produces hydrogen, which is explosive / flammable 	
	allow flames produced	
	ignore sodium burns	1
(-)		
(c)	argon is unreactive / inert	
	allow argon will not react (with reactants / products / elements)	
	·	1
	oxygen (from air) would react with sodium / titanium	
	or	
	water vapour (from air) would react with sodium / titanium	
	allow elements / reactants / products for	
	sodium / titanium	1
/ N		
(d)	metal chlorides are usually ionic	
	allow titanium chloride is ionic	1
	(so)(metal chlorides) are solid at room temperature	

Page 11 of 20

PhysicsAndMathsTutor.com

	or (so)(metal chlorides) have high melting points	
	allow titanium chloride for metal chlorides	1
	(because) they have strong (electrostatic) forces between the ions ignore strong ionic bonds	
	or (but) must be a small molecule or covalent	
	allow molecular	1
	allow alternative approach:	I
	titanium chloride must be covalent or has small molecules (1)	
	with weak forces between molecules do not accept bonds unless intermolecular bonds(1)	
	(but) metal chlorides are usually ionic (1)	
(e)	sodium (atoms) lose electrons	
	do not accept references to oxygen	1
(f)	Na → Na⁺ + e⁻	
	do not accept e for e⁻	1
(g)	$(M_{\rm r} \text{ of TiCl}_4 =) 190$	
	(moles Na = $\frac{20000}{23}$ =) 870 (mol) *	
		1
	(moles TiCl ₄ = $\frac{40000}{190}$ =) 211 (mol) *	1
	*allow 1 mark for 0.870 mol Na and 0.211 mol TiCl₄	1
	allow use of incorrectly calculated M _r from step 1	
	either (sodium is in excess because) 870 mol Na is more than the 844 mol needed	
	or (because) 211 mol TiCl₄ is less than the 217.5 mol needed	
	the mark is for correct application of the factor of 4	

other correct reasoning showing, with

values of moles or mass, an excess of sodium or insufficient TiCl₄ is acceptable allow use of incorrect number of moles from steps 2 and / or 3 1 alternative approaches: approach 1: $(M_r \text{ of } TiCl_4 =) 190(1)$ (40 kg TiCl, needs) 40/190 × 4 × 23 (kg Na) (1) (=) 19.4 (kg) (1) so 20 kg is an excess (1) approach 2: $(M_r \text{ of } TiCl_4 =) 190(1)$ (20 kg Na needs) $\frac{20}{4 \times 23} \times 190 \, (\text{kg TiCl}_4) \, (1)$ (=) 41.3 (kg) (1) so 40 kg is not enough (1) $(actual mass =) \frac{92.3}{100} \times 13.5$ or (actual mass =) 0.923 × 13.5 1 = 12.5 (kg)allow 12 / 12.46 / 12.461 / 12.4605 (kg) 1 an answer 12.5 (kg) scores 2 marks [15]

Q8.

(h)

(a)	enzyme	1
(b)	2.0 × 10 ³ moles	1
(c)	smaller yield allow less methanol is produced	1
	(because) favours endothermic reaction allow (because) favours reverse reaction	

	allow equilibrium / reaction shifts to the left allow equilibrium / reaction shifts to reduce the temperature ignore reference to forward reaction is exothermic ignore references to rate	1
(d)	(yield)	
	equilibrium position moves to the product side	
	allow equilibrium / reaction moves to the right	
	allow equilibrium / reaction shifts to	
	reduce the pressure	1
		1
	(because) fewer molecules / moles / particles on product side	
	allow (because) fewer molecules /	
	moles / particles on the right allow (because) smaller volume on	
	product side	
		1
	(rate)	
	more collisions per unit time	
	allow increases collision frequency / rate	
	ignore more collisions alone	
	ignore faster collisions do not accept any indication of more	
	energetic / forceful collisions	
		1
	(because) more molecules / particles per unit volume	
	allow (gas) molecules / particles closer together	
	ignore more molecules / particles alone	1
	allow converse arguments	
(e)	provides different reaction pathway	
(-)	allow provides a different mechanism /	
	route	
		1
	(which has a) lower activation energy	
	ignore references to collisions	1
(f)	less energy is needed	
	allow reduces the temperature required	
	allow reduces costs	

	ignore references to pressure ignore references to rate or time	1
(g)	no effect / change	1 [12]
Q9.		
(a)	lithium (atom) loses (one) electron(s)	1
	chlorine (atom) gains (one) electron(s)	1
	reference to transfer of one electron	1
	to form positive and negative ions allow to form noble gas electronic structures or	
	allow to form stable electron arrangements or	
	allow to form full outer shells or	
	allow reference to ionic bonding	1
(b)	<u>161</u> 91 - 09 ×100	
(0)	01+30	1
	= 89.944134	1
	= 89.9 (%)	1
	an answer of 89.9 (%) scores 3 marks	
(c)	more sustainable or less waste allow any sensible economic or environmental reason but not 'cheaper' without qualification	1
(d)	50 / 1000 (dm³) or 0.05 dm³ or	
	80 / 1000 (g / cm ³) or 0.08 g / cm ³	1
	= 4(.00) (g)	1
	an answer of 4(.00) (g) scores 2 marks	[10]

Q10. (a)	heat with a water bath or heat with an electric heater or allow to evaporate / crystallise at room temperature	1
(b)	to make sure that all the iodine reacts <i>allow so can see the reaction is complete</i>	1
	(as) excess iodine would remain in solution	1
	 (so) iodine could not be filtered off allow (whereas) excess zinc could be filtered off or (so) the zinc iodide would not be pure allow (so) would have to separate iodine from zinc iodide 	1
(c)	moles $I_2 = \frac{0.5(00)}{254} = (0.00197)$ allow moles $I_2 = 0.00197$ allow 65 g Zn: 254 g I_2 mass Zn = 0.00197 × 65 (g)	1
	mass = 0.128 (g)	
(d)	allow an expression $\frac{0.5(00) \times 65}{254}$ (g) for the first 2 marks $92.0 = \frac{12.5}{\text{maximum mass}} \times 100$	1
(-)	(maximum mass=) $\frac{100}{92.0} \times 12.5$	1
	= 13.6 (g) allow 13.5869 (g)	1
(e)	some product lost on separation allow incomplete reaction	1

(f)
$$M_r ZnI_2 = 319$$

moles needed
 $\left(=0.1 \times \frac{250}{1000}\right) = 0.025$
or
mass per dm³ = 31.9 (g)

an answer of 7.975, 7.98 or 8.0 (g) scores 3 marks

1

1

[14]

Q11.

(a) sodium chloride

or

salt

(b)	expensive	1
(c)	to remove solids	1
(d)	to sterilise the water allow to kill microorganisms	1
(e)	test: (damp) litmus paper	1
	result: bleached	
	or	
	turns white	1
(f)	рН: 7.0	1
	mass of dissolved solid: 0.0 (g)	1
(g)	0.05 g	1

(h)	did not immerse the thermometer (bulb)	1 [10]
Q12. (a)	add excess copper carbonate (to dilute hydrochloric acid) accept alternatives to excess, such as 'until no more reacts'	1
	filter (to remove excess copper carbonate) reject heat until dry	1
	heat filtrate to evaporate some water or heat to point of crystallisation accept leave to evaporate or leave in evaporating basin	1
	leave to cool (so crystals form) until crystals form	1
(b)	must be in correct order to gain 4 marks M _r CuCl ₂ = 134.5 correct answer scores 4 marks	-
	moles copper chloride = (mass / M_r = 11 / 134.5) = 0.0817843866	1
	<i>M</i> _r CuCO ₃ = 123.5	1
	Mass CuCO ₃ (=moles × M_2 = 0.08178 × 123.5) = 10.1(00) accept 10.1 with no working shown for 4 marks	1
(c)	$\frac{79.1}{100} \times 11.0$	
	11.0 × 0.791	1
	8.70 (g) accord 8.70(a) with no working shown for 2 marks	1
(d)	accept 8.70(g) with no working shown for 2 marks Total mass of reactants = 152.5	1
	<u>134.5</u>	

	152.5		
		1	
	88.20 (%)	1	
	allow 88.20 with no working shown for 3 marks		
(e)	atom economy using carbonate lower because an additional product is made or carbon dioxide is made as well <i>allow ecf</i>	1	
		1	[14]
Q13.			
(a)	(delivery) tube sticks into the acid	1	
	the acid would go into the water or the acid would leave the flask or go up the delivery tube		
	ignore no gas collected	1	
(b)	any one from:		
	 bung not put in firmly / properly gas lost before bung put in leak from tube 		
		1	
(c)	all of the acid has reacted	1	
(d)	take more readings in range 0.34 g to 0.54 g	1	
	take more readings is insufficient ignore repeat		
(e)	<u>95</u> 24000		
		1	
	0.00396		
	or		
	3.96 × 10⁻³	1	
	accept 0.00396 or 3.96 \times 10 ⁻³ with no working shown for 2 marks		
(f)	use a pipette / burette to measure the acid	1	

(g)

because it is more accurate volume than a measuring cylinder or greater precision than a measuring cylinder or		
use a gas syringe to collect the gas		
so it will not dissolve in water		
or use a flask with a divider accept description of tube suspended inside flask		
so no gas escapes when bung removed	1	
they should be collected because carbon dioxide is left in flask at end	1	
and it has the same volume as the air collected / displaced	1	[11]